Role of microbial iron reduction in the dissolution of iron hydroxysulfate minerals
نویسندگان
چکیده
[1] Iron-hydroxysulfate minerals can be important hosts for metals such as lead, mercury, copper, zinc, silver, chromium, arsenic, and selenium and for radionuclides such as Ra. These mineral-bound contaminants are considered immobilized under oxic conditions. However, when anoxic conditions develop, the activities of sulfateor iron-reducing bacteria could result in mineral dissolution, releasing these bound contaminants. Reduction of structural sulfate in the iron-hydroxysulfate mineral jarosite by sulfatereducing bacteria has previously been demonstrated. The primary objective of this work was to evaluate the potential for anaerobic dissolution of the iron-hydroxysulfate minerals jarosite and schwertmannite at neutral pH by iron-reducing bacteria. Mineral dissolution was tested using a long-term cultivar, Geobacter metallireducens strain GS-15, and a fresh isolate Geobacter sp. strain ENN1, previously undescribed. ENN1 was isolated from the discharge site of Shadle Mine, in the southern anthracite coalfield of Pennsylvania, where schwertmannite was the predominant iron-hydroxysulfate mineral. When jarosite from Elizabeth Mine (Vermont) was provided as the sole terminal electron acceptor, resting cells of both G. metallireducens and ENN1 were able to reduce structural Fe(III), releasing Fe, SO4 , and K ions. A lithified jarosite sample from Utah was more resistant to microbial attack, but slow release of Fe was observed. Neither bacterium released Fe from poorly crystalline synthetic schwertmannite. Our results indicate that exposure of jarosite to iron-reducing conditions at neutral pH is likely to promote the mobility of hazardous constituents and should therefore be considered in evaluating waste disposal and/or reclamation options involving jarosite-bearing materials.
منابع مشابه
A review of acidity generation and consumption in acidic coal mine lakes and their watersheds.
Lakes developing in former coal mine pits are often characterized by high concentrations of sulfate and iron and low pH. The review focuses on the causes for and fate of acidity in these lakes and their watersheds. Acidification is primarily caused by the generation of ferrous iron bearing and mineralized groundwater, transport through the groundwater-surface water interface, and subsequent iro...
متن کاملComparison of Copper Dissolution in Chalcopyrite Concentrate Bioleaching with Acidianus Brierleyi in Different Initial pH Values
Although bioleaching of chalcopyrite by thermophilic microorganisms enhances the rate of copper recovery, a high temperature accelerates iron precipitation as jarosite, which can bring many operational problems in the industrial processes. In this research work, the bioleaching of chalcopyrite concentrate by the thermophilic Acidianus brierleyi was studied, and the microbial grow...
متن کاملMicrobial reduction of Fe(III)-bearing clay minerals in the presence of humic acids
Both Fe(III)-bearing clay minerals and humic acids (HAs) are abundant in the soils and sediments. Previous studies have shown that bioreduction of structural Fe(III) in clay minerals could be accelerated by adding anthraquinone compound as a redox-active surrogate of HAs. However, a quinoid analogue could not reflect the adsorption and complexation properties of HA, and little is known about th...
متن کاملNanosized iron oxide colloids strongly enhance microbial iron reduction.
Microbial iron reduction is considered to be a significant subsurface process. The rate-limiting bioavailability of the insoluble iron oxyhydroxides, however, is a topic for debate. Surface area and mineral structure are recognized as crucial parameters for microbial reduction rates of bulk, macroaggregate iron minerals. However, a significant fraction of iron oxide minerals in the subsurface i...
متن کاملBiomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals
Iron-reducing and oxidizing microorganisms gain energy through reduction or oxidation of iron, and by doing so play an important role in the geochemical cycling of iron. This study was undertaken to investigate mineral transformations associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. A fluid sample from the 2450 m depth of the Chinese Continental Scientific Dr...
متن کامل